Cubic Spline Interpolation of Continuous Functions

Martin Marsden*
Department of Mathematics, Michigan State University, East Lansing, Michigan 48823

Communicated by E. W. Cheney

Let $[0,1]$ be partitioned into subintervals h_{1}, \ldots, h_{n}. Let P_{n} be an associated cubic spline interpolation operator defined on the space $C[0,1]$. Let $h_{0}=h_{n}$ and $m_{n}=\max \left\{h_{i} / h_{j}:|i-j|=1\right\}$. Examples are given for which m_{n} is uniformly bounded as n tends to infinity while $\left\|P_{n}\right\|$ is unbounded. The periodic cubic spline interpolation operator is shown to have uniformly bounded norm if $m_{n} \leqslant 2.439$ for all n.

1. Introduction

Let f be continuous on [0, 1] and $\pi_{n}: 0=x_{0}<x_{1}<\cdots<x_{n}=1$ be a partitioning of $[0,1]$. A function s is a cubic spline interpolant associated with f and π_{n} if
(a) $s \in C^{2}[0,1]$;
(b) $s(x)$ is a cubic polynomial on $\left(x_{i-1}, x_{i}\right)$ for $i=1, \ldots, n$; and
(c) $s\left(x_{i}\right)=f\left(x_{i}\right)$ for $i=0,1, \ldots, n$.

The two free parameters in a cubic spline interpolant can be variously assigned. Three common ways follow.

Definition 1. Let $s=N_{n} f$ be the cubic spline interpolant to f prescribed by (a), (b), (c) and
$\left(\mathrm{d}_{1}\right) \quad s^{\prime \prime}(0)=s^{\prime \prime}(1)=0$.
Definition 2. Let $s=S_{n} f$ be the cubic spline interpolant to f prescribed by (a), (b), (c) and
$\left(\mathrm{d}_{2}\right) \quad s^{\prime}(0)=s^{\prime}(1)=0$.

[^0]Definition 3. Let $s=L_{n} f$ be the cubic spline interpolant to f prescribed by (a), (b), (c) and

$$
\left(\mathrm{d}_{3}\right) \quad s^{\prime}(0)=s^{\prime}(1) \text { and } s^{\prime \prime}(0)=s^{\prime \prime}(1) .
$$

As f ranges over $C[0,1]$, these definitions specify N_{n}, S_{n}, L_{n} as linear idempotent operators from $C[0,1]$ onto the corresponding cubic spline subspaces of dimension $n+1$. The subspace defined by (a), (b), $\left(d_{1}\right)$ consists of the natural cubic splines (under the supremum norm). If one restricts $C[0,1]$ to the continuous functions satisfying $f(0)=f(1)$, then L_{n} becomes the periodic cubic spline operator and the spline subspace has dimension n.

One concern in the area of cubic spline interpolation is: As $n \rightarrow \infty$ and $\pi_{n}=\max _{i}\left(x_{i}-x_{i-1}\right) \rightarrow 0$, what conditions on a sequence $\left\{\pi_{n}\right\}$ of partitions will guarantee that $\lim \sup \left\|L_{n}\right\|<\infty$ or, equivalently (see [5]), that $\lim \left\|L_{n} f-f\right\|=0$ for $f \in C[0,1]$?

Let $h_{i}=x_{i}-x_{i-1}$ for $i=1, \ldots, n$ and $h_{0}=h_{n}$. Let

$$
K_{n}=\max \left\{h_{i} / h_{j}: i, j=1, \ldots, n\right\}
$$

and

$$
m_{n}=\max \left\{h_{i} / h_{j}:|i-j|=1 \text { and } i, j=0, \ldots, n\right\}
$$

Sharma and Meir [11] have shown that

$$
\begin{equation*}
K_{n} \leqslant K<\infty \tag{1}
\end{equation*}
$$

is a sufficient condition that

$$
\begin{equation*}
\lim \sup \left\|L_{n}\right\|<\infty \quad \text { or } \quad \lim \left\|L_{n} f-f\right\|=0 \quad \text { for } f \in C[0,1] \tag{2}
\end{equation*}
$$

Nord [8] has shown that there exists a sequence $\left\{\pi_{n}\right\}$ for which both (1) and (2) do not hold.

It was demonstrated by Cheney and Schurer [4, Test Case 3] that (2) could hold while (1) was invalid. Then, in succession, it was shown that

$$
\begin{array}{ll}
m_{n} \leqslant m<\sqrt{2} & \text { (Meir and Sharma [7]); } \\
m_{n} \leqslant m<2 & \text { (Cheney and Schurer [5]); and } \\
m_{n} \leqslant m<1+\sqrt{2} & \text { (Hall [6]) }
\end{array}
$$

are sufficient conditions that (2) hold.
Conditions which would imply the Cheney-Schurer result had been stated by Birkhoff and de Boor [2, corollary following Theorem 1].

In Section 2 below we prove that $m_{n} \leqslant m<\infty$ is not a sufficient condition for (2) to hold.

THEOREM 1. For each fixed $m>(3+\sqrt{5}) / 2$ there exists a sequence $\left\{\pi_{n}\right\}$ for which $m_{n} \leqslant m$ for all n while

$$
\lim \sup \left\|N_{n}\right\|=\lim \sup \left\|S_{n}\right\|=\lim \sup \left\|L_{n}\right\|=\infty
$$

In Section 3 we use B-splines to establish the following theorem.
Theorem 2. If $m<2.439+$ and $m_{n} \leqslant m$ for all n, then

$$
\left\|L_{n}\right\| \leqslant \frac{2(1+m)(2+m)\left(1+m+m^{2}\right)}{6 m+7 m^{2}+m^{3}-2 m^{4}}
$$

The approach does not apply to the operators N_{n} or S_{n}.

2. Proof of Theorem 1

To prove Theorem 1 we use Test Case 4 in [4] with $\theta^{-\mathbf{1}}>(3+\sqrt{5}) / 2$ and place a lower bound on $\left\|L_{n}\right\|$ (respectively, $\left\|N_{n}\right\|,\left\|S_{n}\right\|$) which is of the form α^{n} with $\alpha>1$.

Let P_{n} denote one of the operators N_{n}, L_{n}, S_{n}, and let $s_{0}, s_{1}, \ldots, s_{n}$ be the interpolating basis for the corresponding subspace. (If our concern is with periodic splines, we ignore s_{0} here and henceforth.) Then

$$
\begin{equation*}
s_{i}\left(x_{j}\right)=\delta_{i j} \quad \text { for } \quad i, j=0,1, \ldots, n \tag{3}
\end{equation*}
$$

and

$$
\left\|P_{n}\right\|=\max \sum\left|s_{i}(x)\right| \geqslant\left|s_{0}\left(\frac{1}{2}\right)+s_{n}\left(\frac{1}{2}\right)\right|
$$

This inequality is the first step in our proof.
Let $m \geqslant 1$ and let $n=2 k+1$ be an odd integer. Let

$$
h_{1=1} /\left(2+2 m+\cdots+2 m^{k-1}+m^{k}\right)
$$

and $h_{i+1}=h_{n-i}=m^{i} h_{1}$ for $i=0,1, \ldots, k$. Let π_{n} be defined by setting $x_{i}=h_{1}+\cdots+h_{i}$ for $i=0, \ldots, n$.

Set $s=s_{0}+s_{n}$ and $\mu_{i}=s^{\prime}\left(x_{i}\right)$ for $i=0, \ldots, n$. On $\left(x_{k}, x_{k+1}\right)$ we have

$$
s(x)=\left(x_{k+1}-x\right)\left(x-x_{k}\right)\left[\mu_{k}\left(x_{k+1}-x\right)-\mu_{k+1}\left(x-x_{k}\right)\right] / h_{k+1}^{2}
$$

From symmetry, $s(x)=s(1-x)$. Hence,

$$
\begin{equation*}
s\left(\frac{1}{2}\right)=\mu_{k} h_{k+1} / 4=m^{k} \mu_{k} h_{1} / 4 \tag{4}
\end{equation*}
$$

Thus, we can place a lower bound on $\left\|P_{n}\right\|$ by finding μ_{k}.

Lemma 1. Let $\beta=(m+1)+\left(m^{2}+m+1\right)^{1 / 2}$. If $P_{n}=N_{n}$, then

$$
\begin{equation*}
\mu_{k}=3(-m \beta)^{k}\left(\beta^{2}-m\right) /\left(h_{1} D_{1}\right) \tag{5}
\end{equation*}
$$

where

$$
D_{1}=(\beta+m) \beta^{2 k+1}-(\beta+1) m^{k+1} .
$$

If $P_{n}=L_{n}$ or S_{n}, then

$$
\begin{equation*}
\mu_{k}=3(-m \beta)^{k}\left(\beta^{2}-m\right) /\left(h_{1} D_{2}\right) \tag{6}
\end{equation*}
$$

where

$$
D_{2}=(\beta-1) \beta^{2 k+1}+(\beta-m) m^{k}
$$

Proof. From (a), (b), (c) and (3) we have the relations (see [1, p. 12])

$$
\begin{equation*}
m \mu_{0}+2(1+m) \mu_{1}-\mu_{2}=-3 m / h_{1} \tag{7a}
\end{equation*}
$$

and

$$
\begin{equation*}
m \mu_{i-1}+2(1+m) \mu_{i}+\mu_{i+1}=0 \quad \text { for } \quad i=2, \ldots, k \tag{7b}
\end{equation*}
$$

A solution of (7b) is

$$
\begin{equation*}
\mu_{i}=-\mu_{n-i}=A(-\beta)^{i}+B(-m / \beta)^{i} \quad \text { for } \quad i=1, \ldots, k+1 \tag{8}
\end{equation*}
$$

where A and B are arbitrary constants and β is the larger solution of

$$
\begin{equation*}
x^{2}-2(m+1) x+m=0 \tag{9}
\end{equation*}
$$

From (8) with $i=k, k+1$ we have

$$
\mu_{k}=A(-\beta)^{k}+B(-m / \beta)^{k}=-A(-\beta)^{k+1}-B(-m / \beta)^{k+1}
$$

or

$$
\begin{equation*}
(\beta-1) \beta^{2 k+1} A-(\beta-m) m^{k} B=0 . \tag{10}
\end{equation*}
$$

From (7a) and (9) we have

$$
\begin{equation*}
A+B-\mu_{0}=3 / h_{1} \tag{11}
\end{equation*}
$$

If $P_{n}=N_{n}$, Definition 1 requires that $s^{\prime \prime}(0)=0$, yielding

$$
\mu_{1}+2 \mu_{0}=-3 / h_{1}
$$

or

$$
\begin{equation*}
\beta^{2} A+m B-2 \beta \mu_{0}=3 \beta / h_{1} \tag{12}
\end{equation*}
$$

Solving (11) for μ_{0} and substituting into (12) yields in conjunction with (10) that

$$
A=3(\beta-m) m^{k} /\left(h_{1} D_{1}\right)
$$

and

$$
B=3(\beta-1) \beta^{2 k+1} /\left(h_{1} D_{1}\right)
$$

Substitution into (8) gives (5).
The proof of (6) is similar with $\mu_{0}=0$ required.
Lemma 2. If $P_{n}=N_{n}, S_{n}$, or L_{n}, then

$$
\left|s\left(\frac{1}{2}\right)\right|=(-m)^{k} u_{k} h_{1} / 4>\left(\frac{3}{8}\right)\left(m^{2} / \beta\right)^{k}
$$

Proof. Suppose first that $P_{n}=N_{n}$. Then, from (4) and (5)

$$
\left|s\left(\frac{1}{2}\right)\right|=(-m)^{k} u_{k} h_{1} / 4=3 m^{2 k} \beta^{k}\left(\beta^{2}-m\right) /\left(4 D_{1}\right)
$$

Dropping the term $(\beta+1) m^{k+1}$ from D_{1} yields

$$
\left|s\left(\frac{1}{2}\right)\right|>\left(\frac{3}{4}\right)\left(\beta^{2}-m\right)\left(m^{2} / \beta\right)^{k} /\left(\beta^{2}+m \beta\right) .
$$

Since $\left(\beta^{2}-m\right) /\left(\beta^{2}+m \beta\right)>\frac{1}{2}$, the result follows.
Similarly, if $P_{n}=S_{n}$ or L_{n}, we replace the term $(\beta-m) m^{k}$ in D_{2} by the larger term $(\beta-m) \beta^{2 k}$ to get

$$
\left|s\left(\frac{1}{2}\right)\right|>\left(\frac{3}{4}\right)\left(m^{2} / \beta\right)^{k}
$$

Since $m^{2} / \beta>1$ and $m^{2}-3 m+1>0$ are equivalent statements, Lemma 2 immediately implies Theorem 1.

The above construction does not satisfy the requirement that $\left|\pi_{n}\right| \rightarrow 0$. However, adjoining k copies of π_{n} produce a partitioning of $[0, k]$ which can be contracted into a new partitioning of $[0,1]$ which does satisfy this requirement for $n=k(2 k+1)$.

There are many sequences $\left\{\pi_{n}\right\}$ for which a comparable theorem is not true. Indeed, Hall [6] has constructed a sequence for which (2) holds although $\lim K_{n}=\infty$ and $m_{n}=3$ for all n.

3. Proof of Theorem 2

The question of sufficiency for m between $1+\sqrt{2}=2.41+$ and $(3+\sqrt{5}) / 2=2.62-$ is still open. We shall use the normalized B-spline basis (see [9]) to narrow this range.

The normalized B-splines $\sigma_{1}, \ldots, \sigma_{n}$ are defined by

$$
\sigma_{i}=a_{i, i-1} s_{i-1}+a_{i i} s_{i}+a_{i . i+1} s_{i+1} \quad \text { for } \quad i=1, \ldots, n
$$

where

$$
\begin{aligned}
& a_{i, i-1}=\frac{h_{i-1}^{2}}{\left(h_{i-1}+h_{i}\right)\left(h_{i-1}+h_{i}+h_{i+1}\right)} \\
& a_{i, i+1}=\frac{h_{i+2}^{2}}{\left(h_{i+1}+h_{i+2}\right)\left(h_{i}+h_{i+1}+h_{i+2}\right)}
\end{aligned}
$$

and

$$
a_{i i}=1-a_{i-1, i}-a_{i+1, i}
$$

Here and henceforth, subscripts are to be read modulo n. In particular,

$$
\sigma_{1}=a_{1 n} s_{n}+a_{11} s_{1}+a_{12} s_{2}
$$

and

$$
\sigma_{n}=a_{n, n-1} s_{n-1}+a_{n n} s_{n}+a_{n 1} s_{1}
$$

Let A denote the matrix $\left(a_{i j}\right)$ with zeros in the unspecified entries and denote its inverse by $A^{-1}=\left(b_{i j}\right)$. Then we have the inverse representation

$$
s_{i}=\sum_{j} b_{i j} \sigma_{j} \quad \text { for } \quad i=1, \ldots, n
$$

If we set $x_{+}=(x+|x|) / 2$ and

$$
\omega_{i}(x)=\left(x-x_{i-2}\right) \cdots\left(x-x_{i+2}\right)
$$

the σ_{i} are given on $\left[x_{i+2}-1, x_{i-2}+1\right]$ by

$$
\sigma_{i}(x)=\left(x_{i+2}-x_{i-2}\right) \sum_{j=i-2}^{i+2} \frac{\left(x_{j}-x\right)_{+}^{3}}{\omega_{i}^{\prime}\left(x_{j}\right)}
$$

with $\sigma_{i}(x)=\sigma_{i}(x+1)$ for all real x. These functions have the property that

$$
\sum\left|\sigma_{i}(x)\right|=\sum \sigma_{i}(x)=1 \quad \text { for all } x
$$

Since

$$
\begin{aligned}
\sum_{i}\left|s_{i}(x)\right| & =\sum_{i}\left|\sum_{j} b_{i j} \sigma_{j}(x)\right| \\
& \leqslant \sum_{j}\left(\sum_{i}\left|b_{i j}\right|\right) \sigma_{j}(x) \\
& \leqslant \max _{j} \sum_{i}\left|b_{i j}\right| \\
& =\left\|A^{-\mathbf{1}}\right\|_{1}
\end{aligned}
$$

we have
Lemma 3. $\left\|L_{n}\right\| \leqslant\left\|A^{-1}\right\|_{1}$.
Thus, a bound on $\left\|A^{-1}\right\|_{1}$ suffices as a bound on $\left\|L_{n}\right\|$. To prove Theorem 2 we choose

$$
D=\operatorname{diag}\left\{1 / a_{i i}\right\}
$$

and use the bound

$$
\begin{equation*}
\left\|A^{-1}\right\| \leqslant\|D\| /(1-\|I-D A\|) \tag{13}
\end{equation*}
$$

Here and henceforth, all matrix norms are columns norms. Since A is the transpose of an oscillation matrix, more efficient bounds on \| $A^{-\mathbf{1}} \|$ may exist.

To use (13) we must show that

$$
\begin{equation*}
\|I-D A\|<1 \text { for } m_{n} \text { sufficiently small. } \tag{14}
\end{equation*}
$$

Assuming without loss of generality that $\min a_{i i}=a_{22}$, we have

$$
\begin{aligned}
1 /\|D\| & =a_{22}=1-a_{12}-a_{32} \\
& =1-\frac{h_{3}{ }^{2}}{\left(h_{2}+h_{3}\right)\left(h_{1}+h_{2}+h_{3}\right)}-\frac{h_{2}{ }^{2}}{\left(h_{2}+h_{3}\right)\left(h_{2}+h_{3}+h_{4}\right)} \\
& \geqslant 1-\frac{m^{3}}{(1+m)\left(1+m+m^{2}\right)}-\frac{1}{(1+m)(2+m)} \\
& =\frac{(2 m+1)(m+1)}{\left(m^{2}+m+1\right)(m+2)}
\end{aligned}
$$

or

$$
\|D\| \leqslant \frac{\left(m^{2}+m+1\right)(m+2)}{(2 m+1)(m+1)}
$$

Here we have repeatedly used the restrictions

$$
1 / m \leqslant h_{i} / h_{i-1} \leqslant m
$$

observing that the choice

$$
h_{3}=m h_{2}=m h_{4}=m^{2} h_{1}
$$

minimizes a_{22}.
Assuming, again without loss of generality, that $I-D A$ attains its norm in the second column gives

$$
\begin{aligned}
\|I-D A\| & =a_{12} / a_{11}+a_{32} / a_{33} \\
& \leqslant \frac{2 m^{4}+3 m^{3}+3 m^{2}+2 m+2}{2(2 m+1)(m+1)^{2}}
\end{aligned}
$$

by a procedure similar to that indicated above. Thus,

$$
1-\|I-D A\|-\frac{-2 m^{4}+m^{3}+7 m^{2}+6 m}{2(2 m+1)(m+1)^{2}}
$$

Combining the results of this section yields Theorem 2.

4. Remarks

We close with two remarks about quintic spline interpolation.
To get an analog of Theorem 1 for quintic spline interpolation, it is convenient to use Eqs. (9) and (10) of Schurer [10]. Preliminary efforts in this direction suggest that the quantity m^{2} / β in Lemma 2 will be replaced by m^{3} / γ where γ is a root of a fourth-degree polynomial analogous to (9) above and that the quantity $(3+\sqrt{5}) / 2=2.62-$ of Theorem 1 will be replaced by $5.60+$. The latter number is a root of an eight-degree reciprocal polynomial.

Concerning an analog of Theorem 2, one notes that if the matrix A is suitably reinterpreted, Lemma 3 is valid for periodic quintic splines as well. See Richards [9] for a description of the normalized B-spline basis in this case. Since A is a cyclic-variation-diminishing matrix, its minors of odd order have positive determinant (see [9]). Thus, one may use a Lemma of de Boor's [3, p. 457] to bound $\left\|A^{-1}\right\|$. The advantage is as follows: For the choice

$$
D=\operatorname{diag}\left\{1 / a_{i i}\right\}
$$

(13) and (14) above would require that (for example)

$$
a_{13} / a_{11}+a_{23} / a_{22}+a_{43} / a_{44}+a_{53} / a_{55}<1
$$

whereas, the corresponding use of de Boor's Lemma would result in the relaxed restriction

$$
-a_{13} / a_{11}+a_{23} / a_{22}+a_{43} / a_{44}-a_{53} / a_{55}<1
$$

In developing analogs of Theorem 2, one should also consider the method used by Hall in [6].

References

1. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, "The Theory of Splines and Their Applications," Academic Press, New York, 1967.
2. G. Birkhoff and C. de Boor, Error bounds for spline interpolation, J. Math. Mech. 13 (1964), 827-835.
3. C. De Boor, On the convergence of odd-degree spline interpolation, J. Approx. Theory 1 (1968), 452-463.
4. E. W. Cheney and F. Schurer, A note on the operators arising in spline approximation, J. Approximation Theory 1 (1968), 94-102.
5. E. W. Cheney and F. Schurer, Convergence of cubic spline interpolants, J. Approximation Theory 3 (1970), 114-116.
6. C. A. Hall, Uniform convergence of cubic spline interpolants, J. Approximation Theory 0 (0000), 000-000.
7. A. Meir and A. Sharma, On uniform approximation by cubic splines, J. Approximation Theory 2 (1969), 270-274.
8. S. Nord, Approximation properties of the spline fit, Nordisk Tidskr. InformationsBehandling (BIT) 7 (1967), 132-144.
9. F. B. Richards, A Generalized Minimum Norm Property for Spline Functions with Applications, Ph.D. Thesis, University of Wisconsin, Madison, WI, 1970.
10. F. Schurer, A note on interpolating periodic quintic splines with equally spaced nodes, J. Approximation Theory 1 (1968), 493-500.
11. A. Sharma and A. Meir, Degree of approximation of spline interpolation, J. Math. Mech. 15 (1966), 749-768.

[^0]: * Supported by NSF Grant No. GU-2648. Present address: Department of Mathematics, University of Pittsburgh, Pittsburg, Pennsylvania 15213.

