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Cubic Spline Interpolation of Continuous Functions
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Let [0,1] be partitioned into subintervals h l , .•. , h". Let P" be an associated
cubic spline interpolation operator defined on the space C[O,I]. Let ho = h"
and m" = max.{hdhj : I i - j I = I}. Examples are given for which m" is uni
formly bounded as n tends to infinity while II P" II is unbounded. The periodic
cubic spline interpolation operator is shown to have uniformly bounded norm
if m" <; 2.439 for all n.

1. INTRODUCTION

Letjbe continuous on [0,1] and '7Tn : 0= Xo < Xl < '" < X n = 1 be a
partitioning of [0, 1]. A function s is a cubic spline interpolant associated with
jand '7Tn if

(a) S E C2 [0, 1];

(b) s(x) is a cubic polynomial on (Xi-I, Xi) for i = 1,... , n; and

(c) S(Xi) = !(Xi) for i = 0, 1,... , n.

The two free parameters in a cubic spline interpolant can be variously
assigned. Three common ways follow.

DEFINITION 1. Let s = Nnjbe the cubic spline interpolant to j prescribed
by (a), (b), (c) and

(dl ) s"(O) = s"(l) = 0.

DEFINITION 2. Let s = S~jbe the cubic spline interpolant tojprescribed
by (a), (b), (c) and

(d2) s'(O) = s'(l) = 0.
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DEFINITION 3. Let s = Lnlbe the cubic spline interpolant toI prescribed
by (a), (b), (c) and

(d3) s'(o) = s'(1) and s"(O) = s"(1).

As I ranges over C[O, 1], these definitions specify Nn , Sn, Ln as linear
idempotent operators from C[O, 1] onto the corresponding cubic spline
subspaces of dimension n + 1. The subspace defined by (a), (b), (dt) consists
of the natural cubic splines (under the supremum norm). If one restricts
C[O, 1] to the continuous functions satisfying](O) = ](1), then L n becomes
the periodic cubic spline operator and the spline subspace has dimension n.

One concern in the area of cubic spline interpolation is: As n ---+ 00 and
7Tn = maxi (Xi - Xi-t) ---+ 0, what conditions on a sequence {7Tn } of partitions
will guarantee that lim sup II L n Ii < OCJ or, equivalently (see [5]), that
lim II Lnl - III. = °for IE C[O, I]?

Let hi = x, - Xi-t for i = I, ... , nand ho = hn • Let

and

f11 n = max{hdh;: I i - j I = 1 and i,j = 0, ... , n}.

Sharma and Meir [11] have shown that

(1)

is a sufficient condition that

lim sup dLn < 00 or lim Ii Lnl - ft[ = ° for IE C[O, 1]. (2)

Nord [8] has shown that there exists a sequence {7Tn} for which both (1) and (2)
do not hold.

It was demonstrated by Cheney and Schurer [4, Test Case 3] that (2) could
hold while (1) was invalid. Then, in succession, it was shown that

111 n ~ 111 < v!2
f11 n ~ 111 < 2

m n ~ 111 < 1 + v!2

(Meir and Sharma [7]);

(Cheney and Schurer [5]); and

(Hall [6])

are sufficient conditions that (2) hold.
Conditions which would imply the Cheney-Schurer result had been stated

by Birkhoff and de Boor [2, corollary following Theorem 1].
In Section 2 below we prove that 111n ~ f11 < 00 is not a sufficient condition

for (2) to hold.
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THEOREM 1. For each fixed m > (3 + v5)/2 there exists a sequence {7Tn}
for which mn ~ m for all n while

lim sup liNn I[ = lim sup [[ Sn I! = lim sup [[ L n II = 00.

In Section 3 we use B-splines to establish the following theorem.

THEOREM 2. If m < 2.439+ and mn ~ m for all n, then

[I L II :S:: 2(1 + m)(2 + m)(1 + m + m2
)

n '" 6m + 7m2 + m3 - 2m4

The approach does not apply to the operators Nn or Sn •

2. PROOF OF THEOREM 1

To prove Theorem 1 we use Test Case 4 in [4] with &-1 > (3 + v5)/2 and
place a lower bound on II L n II (respectively, II N n II, II Sn II) which is of the form
exn with ex > 1.

Let Pn denote one of the operators N n , L n ,Sn , and let So , SI '00" Sn be the
interpolating basis for the corresponding subspace. (If our concern is with
periodic splines, we ignore So here and henceforth.) Then

for i,j = 0, 1'00" n (3)

and

II Pn II = max I I sb)1 ;:;:: [som + sit)l.

This inequality is the first step in our proof.
Let m ;:;:: 1 and let n = 2k + 1 be an odd integer. Let

and hi+1 = hn - i = mihl for i = 0, 1, ... , k. Let 7Tn be defined by setting
Xi = hI + ... + hi for i = 0'00" n.

Set s = So + Sn and j-ti = S'(Xi) for i = 0, ... , n. On (Xlc , Xlc+1) we have

sex) = (Xlc+1 - x)(x - xlc)[j-tixlc+1 - x) - j-tlc+l(X - xlc)]/h~+1 .

From symmetry, sex) = s(1 - x). Hence,

sm = j-tkhk+1/4 = mkj-tl,h1/4.

Thus, we can place a lower bound on II Pn II by finding j-tk .

(4)
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LEMMA 1. Let fJ == (m + 1) -I- (m2+ m+- 1)1/2. If Pn = Nn , then

!-tic = 3(-mfJ)k(fJ2 - m)/(h1D1), (5)

where

D1 = (fJ + m) fJ2k+1
- (fJ + 1) mlc+1

•

If Pn = L n or Sn , then

!-tic = 3( -mfJ)lc(fJ2 - m)/(h1D2), (6)

where

D2 = (fJ - 1) f32"+1 + (fJ - m) m".

Proof From (a), (b), (c) and (3) we have the relations (see [1, p. 12])

m!-to + 2(1 + m) !-tl -:- !-t2 = -3m/hI (7a)

and

(7b)for i = 2,... , k.m!-ti-l + 2(1 + m) !-ti + !-ti+l = 0

A solution of (7b) is

!-ti = -!-tn-i = A(_fJ)i + B(-m/fJ)i for i = 1,... , k + 1, (8)

where A and B are arbitrary constants and fJ is the larger solution of

x 2
- 2(m + l)x + m = O. (9)

From (8) with i = k, k + 1 we have

!-tic = A(_fJ)1c + B(-m/fJ)1c = -A(-fJ)k+1 - B(-m/fJ)k+1

or
(fJ - 1) fJ21c+lA - (fJ - m) mlcB = O. (10)

From (7a) and (9) we have

A + B - !-to = 3/h1 • (11)

If Pn = Nn , Definition 1 requires that s"(O) = 0, yielding

!-t1 + 2!-to = -3/h1

or

fJ2A + mB - 2fJ!-to = 3fJ/h1 • (12)
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Solving (11) for 1-'0 and substituting into (12) yields in conjunction with (10)
that

and

Substitution into (8) gives (5).
The proof of (6) is similar with 1-'0 = °required.

LEMMA 2. If Pn = N n , Sn, or L n , then

Proof Suppose first that Pn = N n • Then, from (4) and (5)

I sml = (-m)kukh1/4 = 3m2kf3k(f32 - m)/(4D1).

Dropping the term (f3 + I) mk+1 from D1 yields

Ism! > (!)(f32 - m)(m2/f3)k/(f32 + mf3).

Since (f32 - m)/(f32 + mf3) > t, the result follows.
Similarly, if Pn = Sn or L n , we replace the term (f3 - m) mk in D2 by the

larger term (f3 - m) f32k to get

Since m2/f3 > I and m2
- 3m + I > °are equivalent statements, Lemma 2

immediately implies Theorem 1.
The above construction does not satisfy the requirement that I 7Tn I -- 0.

However, adjoining k copies of 7Tn produce a partitioning of [0, k] which can
be contracted into a new partitioning of [0, I] which does satisfy this
requirement for n = k(2k + I).

There are many sequences {7Tn} for which a comparable theorem is not true.
Indeed, Hall [6] has constructed a sequence for which (2) holds although
lim Kn = Cf) and mn = 3 for all n.

3. PROOF OF THEOREM 2

The question of sufficiency for m between 1 + V2 = 2.41+ and
(3 + V5)/2 = 2.62- is still open. We shall use the normalized B-spline basis
(see [9]) to narrow this range.
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The normalized B-splines al , ... , an are defined by

for i= 1,... ,n

where

and

Here and henceforth, subscripts are to be read modulo n. In particular,

and

Let A denote the matrix (ai;) with zeros in the unspecified entries and denote
its inverse by A-I = (b i ;). Then we have the inverse representation

Si = I bi;u;
;

for i = 1,... , n.

If we set x+ = (x + I x 1)/2 and

Wi(X) = (x - Xi-2) ... (x - Xi+2),

the ai are given on [Xi+2 - I, Xi-2 + I] by

with ai(x) = a;(x + I) for all real x. These functions have the property that

Since

I I a;(X)1 = I ai(X) = 1 for all x.

~ I Si(X) 1 = ~ II bi;a;(x)!
, , 1

~ I (~ 1bi ; I) a;(x)
1 ,

~ max II bi ; I
i i

= II A-I 111 ,
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we have

LEMMA 3. II L n II :(; II A-I 111 .

Thus, a bound on II A-I 111 suffices as a bound on II L n [I. To prove Theorem 2
we choose

D = diag{llaii}

and use the bound

[I A-I II :(; II D 11/(1 - ![ 1- DA [I). (13)

Here and henceforth, all matrix norms are columns norms. Since A is the
transpose of an oscillation matrix, more efficient bounds on [[ A-I [I may exist.

To use (13) we must show that

II 1- DA I[ < 1 for mn sufficiently small.

Assuming without loss of generality that min aii = a22 , we have

(14)

or

I/I[ D I[ = a22 = 1 - a12 - aa2

= 1 _ ha
2

(h2 + ha)(h l + h2 + ha)

ma

~ 1 - (1 + m)(1 + m + m2)

_ (2m + l)(m + 1)
- (m2 + m + 1)(m + 2)

II D [I < (m
2 + m + l)(m + 2)

"" (2m + l)(m + 1)

(h2 + ha)(h2 + ha + h4)

1
(1 + m)(2 + m)

Here we have repeatedly used the restrictions

11m :(; hdh i - l :(; m,

observing that the choice

minimizes a22 .
Assuming, again without loss of generality, that I - DA attains its norm

in the second column gives

[I I - DA I[ = a121an + aa21aaa

< 2m4 + 3ma + 3m2 + 2m + 2
"" 2(2m + l)(m + 1)2
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by a procedure similar to that indicated above. Thus,

1 _ [i I _ DA II _ -2m
4 + m

3 + 7m
2 + 6m

I 2(2m + 1)(m + 1)2

Combining the results of this section yields Theorem 2.

4. REMARKS

We close with two remarks about quintic spline interpolation.
To get an analog of Theorem 1 for quintic spline interpolation, it is

convenient to use Eqs. (9) and (10) of Schurer [10]. Preliminary efforts in this
direction suggest that the quantity m 2/f3 in Lemma 2 will be replaced by m3/y
where y is a root of a fourth-degree polynomial analogous to (9) above and
that the quantity (3 + V5)/2 = 2.62- of Theorem 1 will be replaced by
5.60+. The latter number is a root of an eight-degree reciprocal polynomial.

Concerning an analog of Theorem 2, one notes that if the matrix A is
suitably reinterpreted, Lemma 3 is valid for periodic quintic splines as well.
See Richards [9] for a description of the normalized B-spline basis in this case.
Since A is a cyclic-variation-diminishing matrix, its minors of odd order have
positive determinant (see [9]). Thus, one may use a Lemma of de Boor's
[3, p. 457] to bound II A-I II. The advantage is as follows: For the choice

D = diag{l/aii}'

(13) and (14) above would require that (for example)

whereas, the corresponding use of de Boor's Lemma would result in the
relaxed restriction

In developing analogs of Theorem 2, one should also consider the method
used by Hall in [6].
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